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Abstract

An important trend in materials research is to predict properties for a new material before committing experimental resources. Often the
prediction is motivated by the search for a material with a unique combination of properties. The selection of a property or feature is
crucial to the plausibility of the prediction. This paper proposes the use of a self-architecting neural network to model the relation between
materials structure and properties for the purpose of predicting the properties of new materials, i.e. to predict properties for an unknown
compound. In this paper, we summarize the prediction attained with the proposed neural network structure referred to as the Orthogonal
Functional Basis Neural Network (OFBNN). The OFBNN, which combines a new basis selection process and a regularization technique,
not only gives us a more computationally tractable method, but better generalization performance. Simulation studies presented here
demonstrate the performance, behavior and advantages of the proposed network.  1998 Elsevier Science S.A. All rights reserved.

Keywords: Neural network; Materials; Property prediction; Unsupervised learning; Supervised learning

1. Introduction ing) or regression involve a linear combination of the
product of single variable or fixed basis functions (e.g.,
polynomial, spline, and/or trigonometric expansions).The objective of this research is to extend the capa-
From Barron [10], the problem with traditional methods isbility of discovery methods materials research using
that there are exponentially many orthonormal functions,unsupervised and supervised learning to predict material
but unless all of these orthonormal functions are used inproperties. In order to predict properties for a new ma-
the fixed basis, there will remain functions that are not wellterial, it is generally acknowledged that classes or clus-
approximated, i.e., the order of the squared approximationters of compounds which have similarities properties

(2 / d )must be formed [14]. Unsupervised learning is a well error is 1 /n , where n is the number of basis functions
recognized paradigm [15,16] where there is no feedback and d is the number of input variables. This problem is
from the environment to indicate what the desired output avoided by tuning or adapting the parameters of multi-
should be or whether the output is correct. Using un- variable basis functions to fit the target function as in the
supervised learning, the system must discover for itself case of neural networks, wherein the order of the squared
any relationships of interest, such as patterns, features, approximation error is 1 /n.
property values, correlations, or categories in the input The biological origins of neural networks [11], as
and translate the discovered relationship into outputs. We chronicled by Pao [12], established the multi-variable
first introduce a conventional unsupervised learning algo- sigmoid as ‘the’ basis function for neural networks. Today
rithm, K-medoid partitioning algorithm, for grouping and the suite of multivariable basis functions employed in
clustering. To complement the unsupervised algorithm, neural networks is without bound, but the most commonly
an innovative supervised functional learning algorithm used are the sigmoid and radial basis functions. Radial
and structure, Orthogonal Functional Basis Neural Net- basis function neural networks typically employ subset
work (OFBNN), is proposed to find functional relation- selection to identify a set of Gaussian basis functions.
ship within the learned clusters. Broomhead and Lowe [2] have shown how to choose such

Traditional methods of function approximation (learn- a subset randomly from the entire given set. In lieu of
random selection, Rawlings [1] proposed a systematic

*Corresponding author. approach that employs forward selection to choose the
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Table 1
The four-cluster result using self-clustering K-medoid algorithm

Clusters Compounds

Cluster[1: 5 9 11 14 15 17 18 19 20 23 24
]

25 31 32 33 34 38 40 41 46
Cluster [2: 26 28 43 44 45 47 48 49 50 52 53

]
Cluster[3: 1 2 3 4 6 7 8 10 12 13 16

]
29 30 35 36 37 39 42

Cluster[4: 21 22 27 51
]

subset that best explains the variation in the dependent runs, in this research we use a conventional unsupervised
variable incrementally. K-medoid partitioning learning algorithm (PAM), for

Based on this concept, Chen et al. presented an efficient grouping and clustering [13]. Given the same data set and
implementation of forward selection using the orthogonal the same measurement, K-medoid partitioning algorithm
least square method (OLS) [3]. Subset selection can also guarantees giving us the same result every time. Tables 1
be used to avoid overfitting by limiting the complexity of and 2 show the clustering result for partitioning the EO
the network. From the literature, overfitting may be data (see Appendix A) to four and eight clusters, respec-
avoided when combining subset selection with other tively. The underlined compound within each cluster is the
methods such as regularization [5,6], and as contributed by medoid of that cluster. According to the definition of a
Mark Orr, combining of OLS and regularization [4]. We K-medoid silhouette, eight-cluster partitioning is preferred
propose the combined use of an unsupervised learning as it provides better results.
method and the OFBNN as applied to electro-optic (EO) In the next section, a supervised learning method
data of several semiconductor compounds to demonstrate referred to as the OFBNN is used to predict the property or
the advantage of the OFBNN over other neurocomputing feature value of interest from a set of compounds which
methods. have been organized into a class of similar compounds

using the above identified K-medoid method for generating
clusters.

2. Unsupervised learning

Unsupervised learning is an important major learning 3. ‘Functional’ learning via OFBNN
paradigm where there is no feedback from the environment
to indicate what the desired output should be or whether 3.1. Supervised learning
the output is correct. Using unsupervised learning, the
system must discover for itself any relationships of inter- The goal of function approximation, heretofore referred
est, such as patterns, features, property values, correlations, to as regression, is to learn the mapping or function

mor categories in the input, and translate the discovered relating the input x, where x[R and the output y.
relationship into outputs. Conventional unsupervised learn- Herein, the neurocomputing approach distinguishes from
ing algorithms vary from sundry data clustering algorithms most by: (1) emphasizing the use of multi-variable
to more recent neurocomputing approaches employing ‘squashing’ functions for the basis set, and (2) achieving a
Hebbian [15], Kohonen’s [16] and Grossberg’s [17] learn- mapping such that
ing rules. N

Because most neurocomputing approaches to unsuper- y 5 f(x) 5O w f (x),j j
j51vised learning suffer from varying results across multiple

Table 2
The eight-cluster result using self-clustering K-medoid algorithm

Clusters Compounds

Cluster[1: 5 9 15 17 18 19 24 25 31 34 38 41
]

Cluster [2: 44 48 49 50 52 53
]

Cluster[3: 1 2 3 6 12 13 16 29 30 35 36
]

37 39 40 42
Cluster [4: 21 22

]
Cluster [5: 4 7 8 10 14 20 26 32

]
Cluster[6: 11 23 33

]
Cluster [7: 27 51

]
Cluster [8: 28 43 45 46 47

]
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Nwherein only the linear coefficients hw j need to be In the next section, we will summarize basis selectionj 1

learned [6]. Yet despite their inherent ease of use and their process by a simple transformation, Orthogonal Function
advantageous approximation error, neurocomputing ap- Transformation (OFT). We will also propose a new neural
proaches are subject to the same failings as are all other network architecture, Orthogonal Functional Basis Neural
methods of function approximation – a ‘mapping’ as Network (OFBNN) based on this transformation.
opposed to a ‘functional’ mapping, and therein, little or no
ability to discern signal from signal-plus-noise.

3.2. Orthogonal Functional Transformation (OFT) andToday the suite of multi-variable basis functions em-
Orthogonal Functional Basis Neural Network (OFBNN)ployed in neural networks is without bound, but the most

commonly used are the sigmoid and radial basis functions.
Based on the above discussed approach, we will con-Radial basis function neural networks typically employ

struct k orthogonal basis functions, h ,h ,..., h , from the1 2 lsubset selection to identify a set of Gaussian basis func-
original F set, where l is the rank of F. Each orthogonaltions. Broomhead and Lowe [4] have tried to choose such
basis, h , is a linear combination of orthogonal componentsia subset randomly from the entire given set. In lieu of
of each member in the given set F. We also show thatrandom selection, Rawlings [1] has proposed a systematic
based on this decomposition. a new neural networkapproach that employs forward selection to choose the
structure, OFBNN, is proposed.subset that best explains the variation in the dependent

The OFT can be obtained by rearranging the columns ofvariable incrementally. (1) (1) (1)the F;[f , f , ..., f ] matrix through an iterative1 2 NOne approach for selecting RBF centers is subset
procedure, where the superscript denotes the iterationselection, in which a possible subset is chosen to form the
number. In order to explain the OFT procedure, let usregressors from a given regressor set. This method has the
define C ;[w , w ,...,w ]5rearrangement (F). The re-1 2 Nadvantage of producing an efficacious network [1,2]. With
arrangement is based on the following procedure. Definedata sets from noisy environments, functional mapping is

expressed as, y 5f(x )1´ , where ´ represents the error (k) 2i i i i a(k) 5 arg(maxhuuf uu ,i 5 1,2,...,Nj),iand is assumed to be uncorrelated with f(x ). From thei

literature, the general approach to mapping noisy data sets and the index, t5a(1) at the first step (k51, denote as the
(1)is the regularization approach suggested by Tikhonov and superscript). The first column of the C matrix is, w ;f ,1 tArsenin [7]. For example, the zero-order regularization is and the first orthogonal basis is:Tto minimize the following objective function: E5e e1

T (1) (1)Nlg g where e5y2f(X) and g is the linear weight vectors. kf ,f lt i (1)]]]h 5O fIn general, regularization results in small weights in the 1 t(1) 2uuf uui51 tfinal ‘smoothed’ functional form. Mark Orr further en-
(k)hanced OLS and reported on the benefits of regularization At the kth step, k$2, calculate f and h asi kinvolving the selection of RBFs [4]. OLS can be viewed as

(k21) (k21)a more efficient implementation of forward selection in the kf ,f li t(k) (k21) (k21)]]]]f 5 f 2 f ,i 5 1,2,...,N. (2)context of subset selection. The detailed procedure is i i t(k21) 2uuf uutdescribed in reference [3]. During the OLS process, each
OLSorthogonal basis h is obtained in the following way.i (k) (k)N kf ,f lt i (k)The computational procedure can be simply represented as: ]]]h 5O f (3)k t(k) 2uuf uui51 tOLS T(h ) fi kOLS OLS]]]]h 5 f ,a 5 ,1 # i # k,h1 1 ik OLS T OLS k (k)(h ) h w 5 f (4)i i k t

k21
(k) 2 26OLS This process continues until if i #´, where ´510 .5 f 2O a h (1) tk ik i

i51 In this way, we have the C matrix obtained from the
rearrangement of the F matrix. The columns in the CBy combining OLS and forward selection, the regressors
matrix are rearranged in descending order of the norm ofcan be selected [3]. However, if too many regressors are
the orthogonal basis contributed by the original f vectors.used in the functional mapping, it will cause the network to

We also show that the new orthogonal basis function setbe overly sensitive to the training data which often results
has better convergence when combined with the regulari-in poor generalization. To avoid this situation, the zero-
zation process [9].order regularization can be employed. The OLS has been

Based on the above discussion, we obtain a new neuralshown to be an effective method and has been fundamental
network architecture, OFBNN, shown in Fig. 1(a), inin the implementation of forward selection for both ROLS
which an extra layer for orthogonal transformation is[8] and regularization in the selection of RBF centers [4].
added.However, the OLS is insufficient to use in forward

Here we summarize the learning algorithm for OFBNNselection [9]. In the next section, we will discuss a new
below.approach for selecting basis.
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Fig. 1. Architecture of OFBNN.

3.2.1. Algorithm Orthogonal Functional Basis satisfies Eq. (5) can be selected easily. Compared with the
2 3 (k)Functional Mapping (OFBFM) computational cost of order o(P )–o(P ) for h shown ini

PInput: The training patterns hx ,y j . [4] wheret t t51

Output: The connection weights, g, the orthogonal basis
T(k) (k)h h Hset, H, the subset, H , the linear weight, w, connected i isubset ]]]H←H 2 ,T(k) (k)from the nodes in C layer to the output nodes, and the h hi i

mapping.
our process is much more efficient. In general, the compu-Step 1. Construct a Heterogeneous Regressor Set:: F 5

N tational complexity to generate the H matrix using ourhf j . Build the regressor matrix F.i i51
*OFT method described above is the order of O(k N),We use a combination of heterogeneous functions.

where k is the rank of F and N is the number of the givenStep 2: Build orthogonal basis matrix H according to
regressors. In functional mapping, where P»N, our ap-Eq. (3).

(k) proach takes advantage of replacing the complicatedStep 3: Initialization: Let k51, and H 5f, where fsubset
process of updating orthogonal basis with a pre-selectionis an empty set.
process.Step 4 Subset selection, regularization, and generalized

For regularization, we modify l based upon the GCVcross validation (GCV):
derivation as described by [4]. Stop if GCV value reachesThe original mapping problem can be transformed to
its minimum point; otherwise k5k11, repeat this step.y5Hg1e. With zero-order regularization employed, the

T Tobjective function is E5e e1lg g.
3.2.2. End of OFBFM learning algorithmWe can use a similar approach to find the most

The OFBFM finds the H with d basis, and theefficacious subset of H [4]. The GCV is used as the subset
(k) orthogonal weights g5[g ,..., g ]. Since H5CG andstopping criterion. Find h such that 1 d subseti

H is the subset of H, we have H 5CG .subset subset subset
T (k) 2(y h ) ˆFinally, the system equation is: y5H g5CGi subset subset]]]]maxh j (5)(k) T (k) g5Cw, where w5G g is the equivalent final weighti subsetl 1 (h ) hi i

from the original basis nodes to the output nodes. The final
The coefficient is architecture is shown in Fig. 1(b).

T (k)y h t
]]]]g 5 1 # i # kTi (k) (k) 4. Simulation resultsl 1 h hi i

(k) (k)Include h as an element of the H , i.e., In this section, we apply the proposed OFBNN to thei subset
(k) (k) (k)H ←H <h . EO data listed in Appendix A. The OFBNN is applied tosubset subset i

Because all the columns in H are orthogonal to each predict feature values of unknown compounds for the
other, in implementation of selecting H we can set the four-cluster result, shown in Fig. 2 and 3. We applysubset

corresponding selected column to 0, and the next h that OFBNN to learn the functional relationship between1
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Fig. 2. Predict a feature value of a compound from Table 1, Cluster [1.

attributes of 18 compounds in Cluster [3 from Table 1. In training MSE is 0.041 running on 2075 epochs, the testing
Fig. 2(a) the training and testing results are shown. The MSE is 576.7140, the predicted result is 244.424. The BP
training set is comprised of 17 compounds, while one algorithm gives the worst generalized result.
compound (compound number seven) is used for testing. We also learn the function of compounds in Cluster [2
The feature value number four (weight) is the independent from Table 1, which consists of 11 compounds. Among
variable and is predicted by the OFBNN. them, ten compounds are used for training, another com-

In this simulation, the desired feature value is 146.7700 pound (compound number 45) is used for testing. In Fig.
and the predicted value is 145.0495 for OFBNN. The 3(a) the training and testing plot for the OFBNN is shown.
elapsed training time is 3.4400 s on a Macintosh PowerPC In this simulation, the desired feature value is 181.8360
8100/175 machine. The same data set is tested on a and the predicted value is 181.8360. The elapsed training
Functional-Link neural network (FLNN) using conjugate- time is 0.3590 s. We also apply FLNN to the same data set,
gradient search method. The predicted result is 132.4781, the predicted result using this method is 181.8580, and it
and it takes 9.0690 s on the same machine. The result is takes 5.8650 s on the same machine. The result is shown in
shown in Fig. 2(b). The same data set is also tested on a Fig. 3(b). A 5-3-1 MLNN takes 780 epochs to reach
5-3-1 multi-layer neural network (MLNN) using the BP training MSE 0.047, testing MSE is 0.8212, the predicted
algrorithm [18]. The result is shown in Fig. 2(c), where the value is 188.9185.

Fig. 3. Predict a feature value of a compound from Table 1, Cluster [2.
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Fig. 4. Predict a feature value of a compound from eight-cluster result.

The OFBNN is again applied to predict feature values 191.5589. The elapsed time is 2.1760 s. The FLNN gives a
for compounds in Table 2 which involve eight clusters. predicted result of 360.5574, and it takes 6.9630 s on the
The training and testing results are shown in Fig. 4. same machine. A 5-3-1 MLNN takes 1208 epochs to reach
Among the compounds in Cluster [3, 14 are used for training MSE 0.046, testing MSE is 86.76, the predicted
training, one compound (compound number 29) is used for value is 203.78.
testing. The feature value number four (weight) is the A more complicated data set with 357 compounds and
independent variable and will be predicted by the net- 26 dimensions is used to test the effectiveness of the
works. In this simulation, the desired feature is 100.690 OFBNN. This data set is provided by A. Jackson at Wright
and the predicted value is 114.0455. The elapsed time is Lab and being furnished by S. Thaler for the missing
3.0540 s. The FLNN gives the predicted result 66.6705, values [19]. In order to predict local property correctly, we
and it takes 7.6470 s on the same machine. A 5-3-1 MLNN use PAM clustering algorithm working on five to 25
takes 1176 epochs to reach training MSE 0.049, testing clusters. The best clustering result is 15 clusters. We select
MSE is 1441, the predicted value is 44.42. Again, the BP the largest cluster that has most compounds (52 com-
algorithm gives a very bad prediction. pounds) for prediction. The feature value density is the

We also learn the function of compounds in Cluster [2 independent variable and is predicted by the OFBNN. We
from Table 2, which consists of 12 compounds. Among train the network using 45 compounds and test on 52
them, 11 compounds are used for training, another com- compounds. The training MSE is 0.0296, the testing MSE
pound (compound [24) is used for testing. In Fig. 5 the is 0.0765, the training time is 8.265 s. The OFBNN only
training and testing plot is shown. In this simulation, the uses 33 basis. The result is shown in Fig. 6(a). For the
desired feature is 199.9000 and the predict value is same data set, the FLNN gives training MSE 0.1676, the

Fig. 5. Predict a feature value of a compound from eight-cluster result.
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Fig. 6. Predict a feature value of seven compounds from 15-cluster result.

testing MSE, 4.1133, and the training time 96.4950 s. The model combines regularization and generalized cross vali-
FLNN result is given in Fig. 6(b). The BP algorithm, result dation. The OFBNN not only gives us a more computa-
shown in Fig. 6(c), gives us a lower training MSE, 0.0225, tionally tractable method, but also gives us better generali-
running 8963 epochs on a 25-5-1 network, while the zation performance. Clusters of EO data of semiconductor
testing MSE is 1.3543. compounds are formed using an unsupervised learning

algorithm. The OFBNN model is used to learn a function
relating attributes of compounds which form a cluster

5. Conclusions based on similar attribute values. We are able to learn the
function and predict the feature value of compounds in a

We have presented a new neural network functional cluster. The simulation result of the EO data gives us a
approximation model, OFBNN, in which, specifically, the very promising results.
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Appendix A

Name Gap a c at. wt Radiuslon Density

1. InSb 0.23 6.479 6.479 236.55 89 5.777
2. Te 0.33 4.457 5.939 236.55 82 6.25
3. InAs 0.36 6.268 6.479 189.79 71 5.72
4. GeSn 0.3 6.07 6.07 191.28 96 0.0001
5. CdGeAs 0.57 5.943 11.217 334.97 71 5.62

6. GaSb 0.72 6.095 6.095 191.47 89 5.615
7. SiSn 0.84 5.96 5.96 146.77 96 0.0001
8. SiGe 0.9 5.54 5.54 100.67 76 0.0001
9. AgInSe 1.2 6.099 11.691 286.798 66 5.8082

10. SnO 1.2 5.03 5.03 130.7 77 0.0001
11. InSe 1.25 4.002 24.946 193.76 66 5.55
12. InP 1.35 5.868 5.868 145.77 59 4.798
13. GaAs 1.4 5.653 5.653 144.71 71 5.316
14. CdTe 1.5 6.488 6.488 240 82 0.0001
15. CuInS 1.53 5.489 11.101 242.468 66 4.732

16. Se 1.7 4.361 4.954 78.96 66 4.819
17. CuGaSe 1.7 5.606 11.006 242.468 66 4.732

18. ZnSiAs 1.74 5.606 10.88 243.43 71 4.72

19. AgGaSe 1.8 5.981 10.865 335.51 66 5.7592

20. CdSe 1.8 4.3 7.01 191.36 66 0.0001
21. Ag SbS 1.93 11 8.7 541.552 53 0.00013 3

22. Ag AsS 2 10.8 8.69 494.792 53 5.63 3

23. GaSe 2.021 3.747 23.91 148.68 66 5.03
24. ZnGeP 2.05 5.463 10.731 199.9 59 4.1052

25. HgS 2.1 4.145 9.496 232.654 53 7.101
26. GeC 2.1 4.61 4.61 84.6 29 0.0001
27. AgAsS 2.14 17.23 15.19 246.988 53 0.00012

28. b-SiC 2.26 4.359 4.359 40.09 29 3.191
29. GaP 2.3 5.45 5.45 100.69 59 4.135
30. ZnTe 2.3 6.101 6.101 192.97 82 5.924
31. CuGaS 2.43 5.351 10.47 197.388 53 4.3322

32. CdS 2.485 4.16 6.756 144.464 53 0.0001
33. GaS 2.5 3.586 15.496 101.784 53 3.86
34. AgGaS 2.638 5.751 10.238 241.718 53 4.662

35. ZnSe 2.7 5.667 5.668 144.33 66 5.318
36. AgI 2.8 6.473 6.473 234.77 126 6
37. CuBr 2.91 5.69 5.69 143.449 82 4.72
38. CdGeP 2.91 5.74 10.776 246.93 59 4.5492

39. CuI 2.95 6.042 6.042 190.44 96 5.667
40. CdGa S 3.05 5.568 10.04 80.096 53 3.972 4

41. CdGa S 3.05 5.568 10.04 380.096 53 3.972 4

42. CuCl 3.17 5.405 5.405 98.993 77 4.137
43. ZnO 3.3 3.251 5.209 81.369 22 5.651
44. ZnS 3.9 3.823 6.261 97.434 53 3.536
45. LiIO 4 5.481 5.171 181.836 22 4.5023

46. LiNbO 4 5.148 13.86 147.842 22 4.643

47. LiIO 4 5.481 5.171 181.836 22 4.5023

48. NH –2CO 5.9 5.58 4.69 60.069 22 0.00012

49. SiC 6 4.359 4.359 40.09 29 3.191
50. AlN 6.2 3.11 4.98 40.99 25 3.255
51. BaB O 6.3 12.5316 12.7285 222.958 22 0.00012 4

52. KH PO 7 7.45 6.97 136.086 59 0.00012 4

53. SiO 8.4 4.9134 5.4052 60.078 22 2.652
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