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Abstract

An important trend in materials research is to predict properties for a new material before committing experimental resources. Often the
prediction is motivated by the search for a material with a unique combination of properties. The selection of a property or feature is
crucial to the plausibility of the prediction. This paper proposes the use of a self-architecting neural network to model the relation between
materials structure and properties for the purpose of predicting the properties of new materials, i.e. to predict properties for an unknown
compound. In this paper, we summarize the prediction attained with the proposed neural network structure referred to as the Orthogonal
Functional Basis Neural Network (OFBNN). The OFBNN, which combines a new basis selection process and a regularization technique,
not only gives us a more computationally tractable method, but better generalization performance. Simulation studies presented here
demonstrate the performance, behavior and advantages of the proposed network. [ 1998 Elsevier Science S.A. All rights reserved.
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1. Introduction

The objective of this research is to extend the capa-
bility of discovery methods materials research using
unsupervised and supervised learning to predict material
properties. In order to predict properties for a new ma
terial, it is generally acknowledged that classes or clus-
ters of compounds which have similarities properties
must be formed [14]. Unsupervised learning is a well
recognized paradigm [15,16] where there is no feedback
from the environment to indicate what the desired output
should be or whether the output is correct. Using un-
supervised learning, the system must discover for itself
any relationships of interest, such as patterns, features,
property values, correlations, or categories in the input
and trandlate the discovered relationship into outputs. We
first introduce a conventional unsupervised learning algo-
rithm, K-medoid partitioning agorithm, for grouping and
clustering. To complement the unsupervised agorithm,
an innovative supervised functional learning agorithm
and structure, Orthogonal Functional Basis Neural Net-
work (OFBNN), is proposed to find functiona relation-
ship within the learned clusters.

Traditional methods of function approximation (learn-
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ing) or regression involve a linear combination of the
product of single variable or fixed basis functions (e.g.,
polynomial, spline, and/or trigonometric expansions).
From Barron [10], the problem with traditional methods is
that there are exponentially many orthonormal functions,
but unless all of these orthonormal functions are used in
the fixed basis, there will remain functions that are not well
approximated, i.e., the order of the squared approximation
error is 1/n®'®, where n is the number of basis functions
and d is the number of input variables. This problem is
avoided by tuning or adapting the parameters of multi-
variable basis functions to fit the target function as in the
case of neural networks, wherein the order of the squared
approximation error is 1/n.

The biological origins of neural networks [11], as
chronicled by Pao [12], established the multi-variable
sigmoid as ‘the’ basis function for neural networks. Today
the suite of multivariable basis functions employed in
neural networks is without bound, but the most commonly
used are the sigmoid and radial basis functions. Radial
basis function neural networks typically employ subset
selection to identify a set of Gaussian basis functions.
Broomhead and Lowe [2] have shown how to choose such
a subset randomly from the entire given set. In lieu of
random selection, Rawlings [1] proposed a systematic
approach that employs forward selection to choose the
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Table 1
The four-cluster result using self-clustering K-medoid algorithm
Clusters Compounds
Cluster#1: 5 9 11 14 15 17 18 19 20 23 24
25 31 32 33 34 38 40 41 46
Cluster #2: 26 28 43 44 45 47 48 49 50 52 53
Cluster#3: 1 2 3 4 6 7 8 10 12 13 16
29 30 35 36 37 39 42
Cluster#4: 21 22 27 51

subset that best explains the variation in the dependent
variable incrementally.

Based on this concept, Chen et a. presented an efficient
implementation of forward selection using the orthogonal
least square method (OLS) [3]. Subset selection can also
be used to avoid overfitting by limiting the complexity of
the network. From the literature, overfitting may be
avoided when combining subset selection with other
methods such as regularization [5,6], and as contributed by
Mark Orr, combining of OLS and regularization [4]. We
propose the combined use of an unsupervised learning
method and the OFBNN as applied to electro-optic (EO)
data of several semiconductor compounds to demonstrate
the advantage of the OFBNN over other neurocomputing
methods.

2. Unsupervised learning

Unsupervised learning is an important major learning
paradigm where there is no feedback from the environment
to indicate what the desired output should be or whether
the output is correct. Using unsupervised learning, the
system must discover for itself any relationships of inter-
est, such as patterns, features, property values, correlations,
or categories in the input, and translate the discovered
relationship into outputs. Conventional unsupervised learn-
ing algorithms vary from sundry data clustering algorithms
to more recent neurocomputing approaches employing
Hebbian [15], Kohonen's [16] and Grosshberg's [17] learn-
ing rules.

Because most neurocomputing approaches to unsuper-
vised learning suffer from varying results across multiple

runs, in this research we use a conventional unsupervised
K-medoid partitioning learning agorithm (PAM), for
grouping and clustering [13]. Given the same data set and
the same measurement, K-medoid partitioning algorithm
guarantees giving us the same result every time. Tables 1
and 2 show the clustering result for partitioning the EO
data (see Appendix A) to four and eight clusters, respec-
tively. The underlined compound within each cluster is the
medoid of that cluster. According to the definition of a
K-medoid silhouette, eight-cluster partitioning is preferred
as it provides better results.

In the next section, a supervised learning method
referred to as the OFBNN is used to predict the property or
feature value of interest from a set of compounds which
have been organized into a class of similar compounds
using the above identified K-medoid method for generating
clusters.

3. ‘Functional’ learning via OFBNN
3.1. Supervised learning

The goal of function approximation, heretofore referred
to as regression, is to learn the mapping or function
relating the input x, where x€R™ and the output vy.
Herein, the neurocomputing approach distinguishes from
most by: (1) emphasizing the use of multi-variable
‘sguashing’ functions for the basis set, and (2) achieving a
mapping such that

y = f(x) =E w, f(x),

Table 2

The eight-cluster result using self-clustering K-medoid algorithm

Clusters Compounds

Cluster#1: 5 9 15 17 18 19 24 25 31 34 38 41

Cluster #2: 44 48 49 50 52 53

Cluster#3: 1 2 3 6 12 13 16 29 30 35 36
37 39 40 42

Cluster #4: 21 22

Cluster #5: 4 7 8 10 14 20 26 32

Cluster#6: 11 23 33

Cluster #7: 27 51

Cluster #8: 28 43 45 46 47
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wherein only the linear coefficients {w;}} need to be
learned [6]. Yet despite their inherent ease of use and their
advantageous approximation error, neurocomputing ap-
proaches are subject to the same failings as are all other
methods of function approximation — a ‘mapping’ as
opposed to a ‘functional’ mapping, and therein, little or no
ability to discern signal from signal-plus-noise.

Today the suite of multi-variable basis functions em-
ployed in neural networks is without bound, but the most
commonly used are the sigmoid and radial basis functions.
Radial basis function neural networks typically employ
subset selection to identify a set of Gaussian basis func-
tions. Broomhead and Lowe [4] have tried to choose such
a subset randomly from the entire given set. In lieu of
random selection, Rawlings [1] has proposed a systematic
approach that employs forward selection to choose the
subset that best explains the variation in the dependent
variable incrementally.

One approach for selecting RBF centers is subset
selection, in which a possible subset is chosen to form the
regressors from a given regressor set. This method has the
advantage of producing an efficacious network [1,2]. With
data sets from noisy environments, functional mapping is
expressed as, y,=f(x;)+ &, where & represents the error
and is assumed to be uncorrelated with f(x;). From the
literature, the general approach to mapping noisy data sets
is the regularization approach suggested by Tikhonov and
Arsenin [7]. For example, the zero-order regularization is
to minimize the following objective function: E=e"e+
Ag'g where e=y—f(X) and g is the linear weight vectors.
In general, regularization results in small weights in the
final ‘smoothed’ functional form. Mark Orr further en-
hanced OLS and reported on the benefits of regularization
involving the selection of RBFs [4]. OLS can be viewed as
a more efficient implementation of forward selection in the
context of subset selection. The detailed procedure is
described in reference [3]. During the OLS process, each
orthogonal basis h,°" is obtained in the following way.
The computational procedure can be simply represented as:

(hOLS) f
(hOLS) hOLS'

h?"°=f,a, = =i=kh"°

:fk_z aikhiOLS (1)

By combining OLS and forward selection, the regressors
can be selected [3]. However, if too many regressors are
used in the functional mapping, it will cause the network to
be overly sensitive to the training data which often results
in poor generalization. To avoid this situation, the zero-
order regularization can be employed. The OLS has been
shown to be an effective method and has been fundamental
in the implementation of forward selection for both ROLS
[8] and regularization in the selection of RBF centers [4].
However, the OLS is insufficient to use in forward
selection [9]. In the next section, we will discuss a new
approach for selecting basis.

In the next section, we will summarize basis selection
process by a simple transformation, Orthogonal Function
Transformation (OFT). We will also propose a new neura
network architecture, Orthogonal Functional Basis Neural
Network (OFBNN) based on this transformation.

3.2 Orthogonal Functional Transformation (OFT) and
Orthogonal Functional Basis Neural Network (OFBNN)

Based on the above discussed approach, we will con-
struct k orthogonal basis functions, h ,h,,..., h,, from the
original F set, where | is the rank of F. Each orthogonal
basis, h,, isalinear combination of orthogonal components
of each member in the given set F. We also show that
based on this decomposition. a new neura network
structure, OFBNN, is proposed.

The OFT can be obtained by rearranging the columns of
the F=[f{", £, .., "] matrix through an iterative
procedure, where the superscript denotes the iteration
number. In order to explain the OFT procedure, let us
define ¥=[¢,, @,,...¢q]=rearrangement (F). The re-
arrangement is based on the following procedure. Define

a(k) = arg(max{|[f“||%i = 1,2,....N}),

and the index, t= (1) at the first step (k= 1, denote as the
superscript). The first column of the ¥ matrix is, ¢, =",
and the first orthogonal basis is:

<f(1) f(l)> W
=2
At the kth step, k=2, calculate f and h, as
f_(k—l)'f(k—l)
f§k>=f§k‘”——<' T >f(k YVi=12..N. 2
[La—
N /£(K) £(k)
(8
; f(k)||2 ffk) (3)
a=f" @)

This process continues until [[f*|*< ¢, where £=10"°

In this way, we have the ¥ matrix obtained from the
rearrangement of the F matrix. The columns in the ¥
matrix are rearranged in descending order of the norm of
the orthogonal basis contributed by the original f vectors.

We also show that the new orthogonal basis function set
has better convergence when combined with the regulari-
zation process [9].

Based on the above discussion, we obtain a new neura
network architecture, OFBNN, shown in Fig. 1(a), in
which an extra layer for orthogonal transformation is
added.

Here we summarize the learning agorithm for OFBNN
below.
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lnear weight: w=T___* g

Fig. 1. Architecture of OFBNN.

3.2.1. Algorithm Orthogonal Functional Basis
Functional Mapping (OFBFM)

Input: The training patterns {x,,y,}_,.

Output: The connection weights, g, the orthogonal basis
set, H, the subset, H ., the linear weight, w, connected
from the nodes in ¥ layer to the output nodes, and the
mapping.

Step 1. Construct a Heterogeneous Regressor Set:: F =
{f. L. Build the regressor matrix F.

We use a combination of heterogeneous functions.

Step 2: Build orthogonal basis matrix H according to
Eq. (3).

Step 3: Initidization: Let k=1, and HY), _, = ¢, where ¢
is an empty set.

Step 4 Subset selection, regularization, and generalized
cross validation (GCV):

The origina mapping problem can be transformed to
y=Hg+e With zero-order regularization employed, the
objective function is E=e'e+Ag'g.

We can use a similar approach to find the most
efficacious subset of H [4]. The GCV is used as the
stopping criterion. Find h™ such that

T (K) )2
ox{ (y hi™)

O (OO ©

The coefficient is
y'h{"

o S

Include h®™ as an element of the HY _,
(k) (K (k)

subset subset

Because al the columns in H are orthogonal to each
other, in implementation of selecting H, .., Wwe can set the
corresponding selected column to O, and the next h, that

i.e,

satisfies Eq. (5) can be selected easily. Compared with the
computational cost of order o(P?)—o(P?) for h™® shown in
[4] where

h®'hH
our process is much more efficient. In general, the compu-
tational complexity to generate the H matrix using our
OFT method described above is the order of O(k*N),
where k is the rank of F and N is the number of the given
regressors. In functional mapping, where P»N, our ap-
proach takes advantage of replacing the complicated
process of updating orthogona basis with a pre-selection
process.
For regularization, we modify A based upon the GCV
derivation as described by [4]. Stop if GCV value reaches
its minimum point; otherwise k=k+1, repeat this step.

322 End of OFBFM learning algorithm
The OFBFM finds the H with d basis, and the

subset

orthogonal weights g=[g,,..., g4]. Since H=%I_, .. and
Hobset IS the subset of H, we have H .= YI peet
Finaly, the system equation is. Y=H_ e 9= VI et

g="Yw, where w=1_, .9 is the equivalent final weight
from the original basis nodes to the output nodes. The fina
architecture is shown in Fig. 1(b).

4. Simulation results

In this section, we apply the proposed OFBNN to the
EO data listed in Appendix A. The OFBNN is applied to
predict feature values of unknown compounds for the
four-cluster result, shown in Fig. 2 and 3. We apply
OFBNN to learn the functional relationship between
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Fig. 2. Predict a feature value of a compound from Table 1, Cluster #1.

attributes of 18 compounds in Cluster #3 from Table 1. In
Fig. 2(a) the training and testing results are shown. The
training set is comprised of 17 compounds, while one
compound (compound number seven) is used for testing.
The feature value number four (weight) is the independent
variable and is predicted by the OFBNN.

In this simulation, the desired feature value is 146.7700
and the predicted value is 145.0495 for OFBNN. The
elapsed training time is 3.4400 s on a Macintosh PowerPC
8100/175 machine. The same data set is tested on a
Functional-Link neural network (FLNN) using conjugate-
gradient search method. The predicted result is 132.4781,
and it takes 9.0690 s on the same machine. The result is
shown in Fig. 2(b). The same data set is also tested on a
5-3-1 multi-layer neural network (MLNN) using the BP
algrorithm [18]. The result is shown in Fig. 2(c), where the
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training MSE is 0.041 running on 2075 epochs, the testing
MSE is 576.7140, the predicted result is 244.424. The BP
algorithm gives the worst generalized result.

We aso learn the function of compounds in Cluster #2
from Table 1, which consists of 11 compounds. Among
them, ten compounds are used for training, another com-
pound (compound number 45) is used for testing. In Fig.
3(a) the training and testing plot for the OFBNN is shown.
In this simulation, the desired feature value is 181.8360
and the predicted value is 181.8360. The elapsed training
time is 0.3590 s. We also apply FLNN to the same data set,
the predicted result using this method is 181.8580, and it
takes 5.8650 s on the same machine. The result is shown in
Fig. 3(b). A 5-3-1 MLNN takes 780 epochs to reach
training MSE 0.047, testing MSE is 0.8212, the predicted
value is 188.9185.
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(a) OFBNN result

(b) FLNN result

(c) MLNN-BP result

Fig. 3. Predict a feature value of a compound from Table 1, Cluster #2.
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Fig. 4. Predict a feature value of a compound from eight-cluster result.

The OFBNN is again applied to predict feature values
for compounds in Table 2 which involve eight clusters.
The training and testing results are shown in Fig. 4.
Among the compounds in Cluster #3, 14 are used for
training, one compound (compound number 29) is used for
testing. The feature value number four (weight) is the
independent variable and will be predicted by the net-
works. In this simulation, the desired feature is 100.690
and the predicted value is 114.0455. The elapsed time is
3.0540 s. The FLNN gives the predicted result 66.6705,
and it takes 7.6470 s on the same machine. A 5-3-1 MLNN
takes 1176 epochs to reach training MSE 0.049, testing
MSE is 1441, the predicted value is 44.42. Again, the BP
algorithm gives a very bad prediction.

We aso learn the function of compounds in Cluster #2
from Table 2, which consists of 12 compounds. Among
them, 11 compounds are used for training, another com-
pound (compound #24) is used for testing. In Fig. 5 the
training and testing plot is shown. In this simulation, the
desired feature is 199.9000 and the predict value is
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191.5589. The elapsed time is 2.1760 s. The FLNN gives a
predicted result of 360.5574, and it takes 6.9630 s on the
same machine. A 5-3-1 MLNN takes 1208 epochs to reach
training MSE 0.046, testing MSE is 86.76, the predicted
value is 203.78.

A more complicated data set with 357 compounds and
26 dimensions is used to test the effectiveness of the
OFBNN. This data set is provided by A. Jackson at Wright
Lab and being furnished by S. Thaer for the missing
values [19]. In order to predict local property correctly, we
use PAM clustering agorithm working on five to 25
clusters. The best clustering result is 15 clusters. We select
the largest cluster that has most compounds (52 com-
pounds) for prediction. The feature value density is the
independent variable and is predicted by the OFBNN. We
train the network using 45 compounds and test on 52
compounds. The training MSE is 0.0296, the testing MSE
is 0.0765, the training time is 8.265 s. The OFBNN only
uses 33 basis. The result is shown in Fig. 6(a). For the
same data set, the FLNN gives training MSE 0.1676, the
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Fig. 5. Predict a feature value of a compound from eight-cluster result.



36 C.L. Philip Chen et al. / Journal of Alloys and Compounds 279 (1998) 30-38

R ———
-~

S
e,

14 T 1 T 1 1

9.00E+001

8.00E:00

7.00E400

6.00E400

5.00E:00 o

4.00E:00

3.00E00 A

2006400

1.00E00

..........................

" Serist
k |——seres2

........................
0.0E00 THHH Tt T Y Tt

Fig. 6. Predict a feature value of seven compounds from 15-cluster result.

testing MSE, 4.1133, and the training time 96.4950 s. The
FLNN result is given in Fig. 6(b). The BP algorithm, result
shown in Fig. 6(c), gives us a lower training MSE, 0.0225,
running 8963 epochs on a 25-5-1 network, while the
testing MSE is 1.3543.

5. Conclusions

We have presented a new neural network functional
approximation model, OFBNN, in which, specifically, the

model combines regularization and generalized cross vali-
dation. The OFBNN not only gives us a more computa-
tionally tractable method, but also gives us better generali-
zation performance. Clusters of EO data of semiconductor
compounds are formed using an unsupervised learning
algorithm. The OFBNN model is used to learn a function
relating attributes of compounds which form a cluster
based on similar attribute values. We are able to learn the
function and predict the feature value of compounds in a
cluster. The simulation result of the EO data gives us a
very promising results.
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Appendix A
Name Gap a c at. wt Radiusion Density
1 InSb 0.23 6.479 6.479 236.55 89 5777
2. Te 0.33 4.457 5.939 236.55 82 6.25
3. InAs 0.36 6.268 6.479 189.79 71 5.72
4. GeSn 0.3 6.07 6.07 191.28 96 0.0001
5. CdGeAs, 0.57 5.943 11.217 334.97 71 56
6. GaSb 0.72 6.095 6.095 191.47 89 5.615
7. Sisn 0.84 5.96 5.96 146.77 96 0.0001
8. SiGe 0.9 5.54 5.54 100.67 76 0.0001
9. AgInSe, 12 6.099 11.691 286.798 66 5.808
10. SnO 12 5.03 5.03 130.7 77 0.0001
11 InSe 1.25 4.002 24.946 193.76 66 5.55
12. InP 1.35 5.868 5.868 145.77 59 4.798
13. GaAs 14 5.653 5.653 144.71 71 5.316
14. CdTe 15 6.488 6.488 240 82 0.0001
15. Culns, 1.53 5.489 11.101 242.468 66 4.73
16. Se 17 4.361 4.954 78.96 66 4.819
17. CuGaSe, 17 5.606 11.006 242.468 66 4.73
18. ZnSiAs, 174 5.606 10.88 243.43 71 47
19. AgGaSe, 18 5.981 10.865 335,51 66 5.759
20. CdSe 18 4.3 7.01 191.36 66 0.0001
21 Ag,Sbs, 1.93 11 8.7 541.552 53 0.0001
22. Ag,ASS, 2 10.8 8.69 494.792 53 5.6
23. GaSe 2.021 3.747 2391 148.68 66 5.03
24. ZnGeP, 2.05 5.463 10.731 199.9 59 4.105
25. HgS 21 4.145 9.496 232.654 53 7.101
26. GeC 21 461 461 84.6 29 0.0001
27. AgASS, 214 17.23 15.19 246.988 53 0.0001
28. b-SiC 2.26 4.359 4.359 40.09 29 3.191
29. GaP 23 5.45 5.45 100.69 59 4.135
30. ZnTe 23 6.101 6.101 192.97 82 5.924
3L CuGas, 243 5.351 10.47 197.388 53 4.332
32 Cds 2.485 4.16 6.756 144.464 53 0.0001
33. GaS 25 3.586 15.496 101.784 53 3.86
34. AgGaS, 2.638 5.751 10.238 241.718 53 4.66
35. ZnSe 2.7 5.667 5.668 144.33 66 5.318
36. Agl 238 6.473 6.473 234.77 126 6
37. CuBr 291 5.69 5.69 143.449 82 4.72
38. CdGeP, 291 5.74 10.776 246.93 59 4.549
39. Cul 2.95 6.042 6.042 190.44 96 5.667
40. CdGa,S, 3.05 5.568 10.04 80.096 53 397
41. CdGa,S, 3.05 5.568 10.04 380.096 53 397
42. CucCl 317 5.405 5.405 98.993 77 4.137
43. ZnO 33 3.251 5.209 81.369 22 5.651
44. ZnS 39 3.823 6.261 97.434 53 3.536
45, LilO, 4 5.481 5171 181.836 22 4.502
46. LiNbO, 4 5.148 13.86 147.842 22 4.64
47. LilO, 4 5.481 5171 181.836 22 4.502
48. NH,-2CO 5.9 5.58 4.69 60.069 22 0.0001
49. SiC 6 4.359 4.359 40.09 29 3.191
50. AIN 6.2 311 4.98 40.99 25 3.255
51. BaB,O, 6.3 12.5316 12.7285 222.958 22 0.0001
52. KH,PO, 7 7.45 6.97 136.086 59 0.0001
53. SO, 8.4 49134 5.4052 60.078 22 2.65
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